BIM for FIM/BIFM
Change on the Horizon

Project Leadership Award Winners
BIM for FIM/BIMF

Change on the Horizon

By Peter Nicholas Cholakis

BIM for FM, and the adoption of an associated Building Information Management Framework—BIMF—will drive productivity gains within the Architectural, Engineering, and Construction (AEC) sector. The adoption of robust business processes, as well as systems integration of industry knowledge domains, will be facilitated by information technology. 3D/4D/5D Building Information Modeling (BIM), more collaborative Project Delivery Methods such as Integrated Project Delivery (IPD), and Job Order Contracting (JOC), along with several other core competencies, will converge to provide an actionable framework for professional collaboration and increased productivity from capital planning through construction and downstream operations and maintenance.

The success of these processes and technology tools is completely dependent upon transformational changes regarding the ways in which AEC professionals deliver their products and services.

The Drivers for Change

An altered economic and environmental “landscape” puts significant focus on all aspects of the built environment—from planning, design, construction, operations, repair, renewal, and adaptation—to maintenance, sustainability, and disposal. Buildings have a tremendous impact upon the environment and are at the epicenter of a growing worldwide crisis. Approximately 40 percent of the world’s raw materials and energy are consumed by buildings. In the United States, buildings consume approximately seventy-five percent of electricity produced and nearly fifty percent of total energy output. At the same time, buildings contribute forty percent of the carbon emissions to the atmosphere and generate twenty percent of material waste to landfills.1

Local and national economies are intertwined with buildings and infrastructure. On the local level, the financial stability of private and public organizations can be directly impacted by the quality of construction and facility management practices. Capital investments are required for new buildings, and ongoing operational and reinvestment cost components are even greater, representing approximately 80 percent of a building’s total cost over its life. In many cases, the annual expenditures required to operate and maintain the physical plant are second only to salary/benefit costs. Across multiple sectors—education, health care, defense, research, manufacturing, transportation, and utilities—service quality is directly linked to the facilities in which they are housed.

On a global scale, the stability of economy and environment can be linked to buildings and physical infrastructure (bridges and roadways, utilities), in terms of competition for limited capital resources in a time of tumultuous economic change.

Historically, the United States AEC sector has been notoriously unproductive, primarily as a result of the curriculum training and professional practices of architects and engineers, which oftentimes lacked a quantitative cost engineering perspective. A recent change is that many building Owners are insisting on improved business process integration and collaboration and the use of IPD (Integrated Project Delivery) and JOC (Job Order Contracting), as well as collaborative software tools. These initiatives offer “transparency and collaboration for productivity,” which heretofore has proved elusive to stakeholders.

The implementation and consistent use of standardized information, robust business processes, and easily deployable technologies greatly improves AEC sector practices and performance metrics from initial concept through construction, operation, repair, renewal, and deconstruction/replacement.

4D/5D BIM (Building Information Modeling), integrated with more efficient Construction Delivery Methods such as IPD and JOC, and other complementary facility manage-
Economic Impacts of an Unproductive AEC Sector

As shown in Figure-1, the AEC sector in the United States has historically been singularly unproductive. Construction productivity has decreased over the past forty years, while productivity in virtually all other non-farming sector industries has increased significantly. Also, thirty percent or more of construction projects don’t meet budget or schedule.\(^3\)

Reengineering practices commonplace in other industries have been slow or nonexistent in the AEC sector. A government study estimated the financial losses attributed to the lack of interoperability between facility design, engineering, and associated facility management technology exceeds $15 billion annually in the United States.\(^4\)

Building Owners and operators paid the bulk of these excess costs, which included cost overruns spanning initial design, construction, and ongoing facility operations and management. While $15 billion is a considerable sum, it is dwarfed by the estimated ten to forty percent of non-value-added labor and material waste associated with the approximately one-trillion-dollar U.S. construction industry.\(^5\)

With technology, the centralization and communication of information for architects, engineers, contractors, and Owners, combined with the implementation of robust business practices, will enable the AEC industry to significantly improve productivity.\(^6\)

The current and potential impacts upon global climate change, as well as associated political issues, represent a clear and present danger to which the construction industry is a contributor, and to which its stakeholders can and must respond.

A Framework for Change

The AEC’s sector transformation from disparate management practices and scattered silos of information will be greatly aided by the adoption of 3D/4D/5D object-oriented BIM software, common interoperability standards, integrated construction delivery business processes such as IPD and JOC, supporting technologies, and the growing awareness of life-cycle and total cost of ownership practices.

Many currently view BIM as a 3-dimensional representation of the built environment, primarily for use during the design and construction phases. This narrow focus is inconsistent with the definition of BIM. Building Information Modeling is the process of generating and managing information about a building during its entire life cycle. The National Institute of Building Sciences (NIBS) notes the following about BIM: “The scope of Building Information Modeling (BIM) directly or indirectly affects all stakeholders supporting the capital facilities industry. BIM is a fundamentally different way of creating, using, and sharing building lifecycle data.” BIM is a digital software system and an open standards-based collaborative business process targeting life-cycle facility management. It includes 3D (visualization); 4D (time-scheduling/life-cycle analysis); and 5D (cost-estimating/capital planning), which serve as a common, centralized repository/portal for all life-cycle building-related information, from concept through deconstruction.

The combination of standardized information and facilities management processes enables facility life-cycle and total cost of ownership management. BIM’s expansion to incorporate all facility life-cycle phases necessitates standardized business process, taxonomies, and data architectures. Interoperability and standardized content at all levels of granularity, from building models to systems, subsystems, components, and individual units, are required.

Exemplary efforts in this area include COBIE, IFC, and Ominiclass. COBIE, Industry Foundation Classes (IFC), and OmniClass\(^{TM}\) Construction Classification System (OminiClass or OCCS) are data models, definition, rules, and/or protocols intended to define data sets and information pertaining to capital facilities throughout their lifecycles. COBIE, for example, is a specification for capturing design and construction information for facility managers and operators in a digital format. The standardized data architecture was developed to replace the current ad hoc process of leaving disparate piles of paper documents and digital files behind after a construction project is completed. All of these standards promote the exchange/sharing of accurate and reusable building information.
Figure 2. Building Information Management Framework (BIMF), illustrates the roles and integration of several of the complementary knowledge domains, processes, and technologies that are components of a 4D/5D BIM strategy. These components include master planning, capital planning, and management systems (CPMS), design, cost estimating, procurement, construction delivery methods (IPD, JOC), construction, construction management, operations, maintenance, repairs, computerized maintenance management systems (CMMS), space planning and utilization (CAFM-computer-aid facility management), and deconstruction.

Collaboration among a wide range of constituencies and stakeholders of the built environment is enhanced by the integrated approach. Various parties involved include architects, engineers, contractors, construction managers, cost estimators, project managers, real property managers, appraisers, brokers, mortgage bankers, facility assessors, facility managers, maintenance and operations staff, safety and security professionals, owners and C-level executives, middle managers, oversight regulators and advocate organizations, and the general community.

Specialized skills and software tools complement, communicate with, and are components of 3D/4D/5D BIM, enabling virtual “real-time” facilities management. The goal is to integrate domain-specific competencies, information, and technologies necessary for any organization to gain requisite visualization into the life-cycle practices of the entire planned and built facility, at any time.

The level of expertise achieved in each competency or core area will determine how well a particular organization can effectively manage the entire capital planning and building portfolio. Competency areas include:

1. Cost engineering and functional/department models
2. Quantity take-off and cost estimating (materials, labor, time, and equipment)
3. Architectural planning and design, systems integration across functions
4. Product libraries from building product manufacturers
5. Facilities management—occupancy/utilization, conditions, operations, maintenance, repair, capital renewal
6. Life-cycle cost data
7. Information visualization and decision-support tools

Newly Emerging Effective Construction Delivery Methods: IPD & JOC

IPD (Integrated Project Delivery) and JOC (Job Order Contracting) offer both philosophy and tools for improved performance, as selection of the delivery method greatly impacts the degree of collaboration and communication of a project.

The selection and management of the construction delivery method creates the environment for a project from its early conceptual development through procurement, construction, warranty period, and beyond. Research has demonstrated that the level of construction project integration has an impact upon productivity, quality, timeliness, and even the level of sustainability that can be achieved on capital projects.7

Many traditional construction delivery methods are antagonistic by nature, pitting Owners against contractors, and/ or contractors against designer, etc. Furthermore, Owners are very much aware of the problem, noting that problems encountered are due to the current status quo and “artifacts of a construction process fraught by lack of cooperation and poor information integration.”

Altering fundamental flaws and selecting collaborative project delivery methods that involve all construction project constituencies from the very beginning of any project offers a pathway to significant improvement.

IPD

Integrated Project Delivery has emerged as an accepted construction delivery method, along with Design/Build, CM-at-Risk, and Job Order Contracting (JOC). IPD and JOC, the latter also a form of integrated project delivery, were developed to improve construction delivery productivity and quality. IPD targets major new construction projects, while JOC provides a framework for facility renovation, repair, sustainability projects, as well as minor new construction. Both IPD and JOC are LEAN business processes. LEAN is the adoption of a culture of continuous improvement within an organization through collaboration and constant learning. Thus, LEAN, IPD, and JOC share the same goals: The removal of waste within a process and maximized value at each step of a process.

Initially developed and implemented in limited sectors ten to twenty or more years ago, awareness and broader acceptance of these LEAN practices has only recently begun. A paper titled “Integrated Project Delivery for Public and Private Owners” was published in 2010—the result of a joint effort by NASFA (National Association of State Facility Administrators), COAA (Construction Owners Association of America), APFA (Association of Higher Education Facilities Officers), AGC (Associated General Contractors of America), and AIA (American Institute of Architects). It describes the IPD delivery method as a collaborative alliance among project stakeholders—Owners, designers, contractors, and other participants—to optimize the project results. IPD pulls together the owner, contractor, designer, and others to achieve higher project results, which in turn increases the overall value to the owner, and everyone involved.

While any construction delivery method may work well, dependent upon the parties involved, IPD provides a philo-
sophistical framework and structure to improve the odds of success. As illustrated in Figure 3, traditional delivery methods such as design-bid-build typically do not contractually structure or require collaboration. Others, such as design-build, have a limited degree of contractually and/or process-required collaboration. IPD is a multi-party contract supporting collaboration among the Owner, contractors, and A/E. Deployed to its full extent, IPD, like BIM, represents several things— a business process/philosophy, a construction delivery method, and a supporting technology.

A “LEAN”-oriented process, IPD emphasizes collaboration and partnership. It fosters integrating design and construction expertise of contractors, engineers, and Owners from the conceptual stage of a project life-cycle through project completion. Risk allocation also significantly differs from traditional processes, as overall risk is shared and thus mitigated.

Those involved with the construction sector would likely recognize and acknowledge the importance and benefit of subcontractor, contractor, and supplier input as early as possible, in concert with the Owner and design team. The result of this fundamental systems change shifts the overall approach to a process-centric activity by integrating needs, domains, and schedules.

JOC

Job Order Contracting and IPD share many of the same characteristics. Job Order Contracting is IPD implementation for small-scale construction projects. Initially conceived approximately twenty-five years ago, JOC, like Integrated Project Delivery, is based upon collaboration and requires early involvement of contractors, sub-contractors, Owners, and the A/E. Joint scope of work (SOW) under a JOC program starts most projects, referred to as task orders. An example of a typical JOC workflow is shown in Figure 4.

Risk is mitigated, as SOWs are jointly developed, discussed, agreed upon, and finalized. As a result, a JOC contract rarely experiences the legal claims/disputes or change orders frequently encountered with traditional construction delivery methods.

Longer-term contractor relationships, greatly sought after by all parties, are common with JOC programs, averaging three to five years in duration.

BIMF, IPD, and JOC necessitate early involvement of a construction manager/contractor in collaboration with the facility owner and the designer. An outline of some commonly shared characteristics between these methods would also include the following:

Key Participants Bound Together as Equals – Contractually defined relationships to establish collaboration and consensus-based decisions.

Early Involvement of Key Participants and Jointly Developed Scope of Work – Participants meet to define scope of work early in the process.

Performance-Based – Shared financial risk and/or reward based on project outcome.

Transparency – Maintaining an open environment increases trust and keeps contingency discussion controllable.

Common Data Formats and Software Technology – Building Information Modeling and complementary JOC/IPD cost estimating and project management software integrate document management, visualization, and communications tools. Standards-based information may include COBIE, IFC, MasterFormat, UNIFORMAT, Omni Class, and industry-defined metrics.

Lean Design and Construction – Value-based decision making.

Co-Location of Team – Use of local resources whenever possible.

Figure-5 illustrates basic differences between traditional construction delivery methods and IPD/JOC.

The Benefits of Integrating 3D/4D/5D BIM, IPD, and JOC

Most are aware that the earlier changes are defined in a project, the less costly they are. Bringing IPD and JOC contractors together with owners and A/E at the planning stage provides the highest level of common understanding of work requirements at the earliest possible point. The ability to address requirements at the conceptual stage and maintain communications throughout the project lifecycle has significant positive impacts upon cost visibility and cost containment, as illustrated in Figure 6. IPD and JOC bring valuable information into the process earlier, thus mitigating costly changes later in the construction cycle. The combination of BIM with IPD and JOC enables scalability and significantly affects project success rates. Up-front costs may be somewhat higher, but overall project costs and timelines can be improved by ten to twenty percent or more.8 Miscommunications, change orders, adversarial relationships, and legal battles endemic to traditional construction delivery methods are virtually eliminated.

Contractors provide input about the potential cost, constructability, and value engineering that aids the Owners and designer in making more efficient and cost-effective decisions. Common shared processes govern communication and information flow among all project members. By nature, IPD and JOC, working in parallel with BIM enable effective and transparent transfer
of information among all construction project participants, creating and building trust and collaboration.

A listing of some of the benefits available via the integration of 3D/4D/5D BIM, IPD, and JOC includes:

- Maintainable designs
- Better-defined scopes of work
- Early cost certainty
- Fewer downstream re-designs/change orders
- Long-term relationships built upon trust and performance
- Use of local resources
- Predictable planning
- More accurate schedules
- Improved cost visibility and cost control
- Collaborative vs. territorial behaviors
- Reduced risk
- Fewer claims/dispute/lawsuits
- Higher productivity
- Reduced delivery costs
- Reduced operational costs
- Efficient sustainability project delivery
- Expectations better met by all parties – Owners, A/E, Contractors, Sub-Contractors/Trades, Oversight Groups, Community

All phases of the construction project lifecycle are considered in an integrated approach. As an example, the use of standardized cost data architectures and unit prices are deployed to improve transparency. From a procurement perspective, collaborative approaches such as Qualifications Based Selection (QBS) and Best Value-Fee Proposal are well suited to collaboration, whereas, Low Bid runs contrary to BIM and Integrated Project Delivery philosophies.

Conclusion

BIM for FM and a Building Information Management Framework (BIMF) includes a laser-sharp focus on integrated functional planning and cost metrics. The framework’s value for stakeholders includes: a) transformational change effected by a capital planning philosophy that emphasizes integration of professional practice; b) delivery models that emphasize lean construction practices; and c) transparent standardized construction and facility operations data and taxonomies that contain cost by providing access to building information, whether stored or linked to a building model.

3D/4D/5D BIM, IPD, and JOC are powerful tools that drive project collaboration, quality, productivity, and a better return-on-investment. Electronic sharing of standardized “apples-to-apples” information and more formalized and consistent business processes will help to promote communication, transparency, and collaboration. Standardized model schema, common data exchange and access protocols, model server technology, cloud technology, intelligent agent technologies, and user-friendly interfaces all work together to realize BIM implementation. Adaptation of the overarching “Building Information Management Framework” assures consistent use of business processes to assure accurate, timely information and better decision-making.

Sharing best practices leads to more effective facilities and infrastructure asset management. 4D/5D BIM, integrated with standardized construction delivery methods such as IPD and JOC, as well as complementary processes/technologies such as CPMS, CAFM, CMMS, GIS (geographic information systems), and BAS (building automation systems), provide tools to capture, store, and share critical building information.

Challenges facing the AEC sector and the planning community at large require behaviors and practices foreign to the professional education of many practitioners. Greater emphasis must be placed upon the skills and tools required to quantify and manage operations of the built environment. In general, capital planning must be recognized as being of strategic importance and an ongoing process, with continual reassessment and gap analysis applied. Comprehensive, long-term strategies to acquire, develop, and sustain the built environment and the professional competencies required for sustainment must be adequately defined within various professional curricula. For professionals, BIM, 4D/5D BIM, IPD, and JOC offer a basis for capital planning and scope of work definition that lead to more effective organization-wide planning and more efficient facility operations.

2. United States Department of Commerce, Bureau of Labor, Statistics

Peter Nicholas Cholakis
4Clicks Solutions, LLC
p cholakis@4clicks.com

Figure 6.